
Theoret. claim. Acta (Berl.) 21, 215--234 (1971) 
© by Springer-Verlag 1971 

Commentationes 

How Quantitative is the Concept of Maximum Overlap?* 

RODNEY J. BARTLETT** and  YNGVE OHRN 

Quantum Theory Project, Chemistry Department, Nuclear Sciences Building, University of Florida, 
Gainesville, Florida 32601 

Received June 11, 1970 

A criterion based on the concept of maximum overlap has been used as an optimizing principle 
to obtain approximate all valence electron wave functions for a variety of molecules. By means of this 
procedure, the wave functions are obtained without the use of parameters, semiempirical data, or 
integral approximations. Even though there are obvious errors in such an approach, the charge 
densities and dipole moments calculated from these wave functions have a surprising degree of 
validity. It does appear, though, that the results will be most reasonable for strongly covalent molecules, 
where large amounts of charge migration are not involved. 

Ein Kriterium auf Grund der Konzeption der maximalen Qberlappung wurde als Optimali- 
sierungsprinzip verwendet, um Wetlenfunktionen ftir alle Valenzelektronen einer ganzen Reihe von 
Molek/ilen zu finden. Auf diesem Weg werden keine Parameter, semiempirische Daten oder Integral- 
n~iherungen ben6tigt. Trotz der offensichtlichen Vernachl~issigungen sind die erhaltenen Ladungs- 
dichten und Dipolmomente erstaunlich gut. Allerdings scheint es, als ob die Ergebnisse bei ausgepr~igt 
kovalenten Molekfilen am besten waren, wo gr613ere Ladungsverschiebungen nicht auftreten. 

Utilisation d'un crit~re fond6 sur le concept du recouvrement maximum comme principe pour 
obtenir des fonctions d'onde pour tousles 61ectrons de valence de route une vari6t6 de mol6cules. A 
l'aide de ce proc6d6 les fonctions d'onde sont obtenues sans l'emploi de param6tres, de donn6es semi- 
empiriques ou d'approximation d'int6grales. Quoique cette approche comporte des erreurs 6videntes, 
les densit6s de charge et les moments dipolaires calcul6s ~t partir de ces fonctions d'onde ont un degr6 
de validit6 surprenant. I1 apparait n6anmoins que les r6sultats seront d'autant plus raisonnables que 
les molecules seront plus covalentes et ne comporteront pas de transferts de charges importants. 

L Introduction 

The "cri ter ion of m a x i m u m  overlap" between the a tomic orbitals of one a tom 
and  those of ano ther  leads to an appealing,  though naive, picture of chemical  
bonding.  Briefly, a b o n d  in  a molecule is thought  to be most  stable for a given 
b o n d  length when the a tomic orbitals  on one center have the largest overlap with 
the orbitals  on a second center. The connec t ion  between m a x i m u m  overlap and  
the strength of a chemical  b o n d  or iginated in the studies of valence by Paul ing  
and  Slater as an aid in deciding which a tomic orbitals,  or combina t ions  of them, 
could give the strongest  bonds  in molecules. Paul ing  defined an index of b o n d  
strength, solely on the basis of the angula r  dependence of the a tomic orbitals,  and  
concluded that  "the energy of a b o n d  is abou t  p ropor t iona l  to the [strengths]  of 
the b o n d  orbitals  of the two atoms" [ 1]. Mul l iken  generalized this idea suggesting 
that  the overlap integral  itself would logically be a better index of b o n d  strength, 
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since both the radial and the angular portions of the atomic orbital are taken 
into account [2]. 

Although the proportionality between bond energy and maximum overlap is 
only qualitative, it is the intention of this paper to investigate the degree of 
validity of a form of the "maximum overlap criterion" in a more quantitative 
sense than is customary, namely, as an optimizing principle to employ in gen- 
erating simple wave functions for molecules. 

This point of view seems to have been first used by Lykos and Schmeising [4], 
who employed a "maximum overlap criterion" in order to generate approximate 
wave functions for n-electron molecules. In addition, they applied the basic 
analysis to atoms which, though inconsistent with the "chemical" concept of 
maximum overlap, served to illustrate a defect of the method that is also apparent 
in molecular problems; and thirdly, generalizing an earlier analysis by Murrell [7], 
they employed the "overlap criterion" in its traditional valence-bond domain to 
predict hybrid orbitals. Our primary concern is with the first of these applications, 
since it is our objective to investigate the validity of wave functions obtained 
from the "maximum overlap criterion" but for more general systems where all 
valence electrons are considered. 

It should be noted that the desired wave function is defined as the solution 
of the time independent Schr6dinger equation corresponding to a particular 
eigenvalue which, for our purposes, will always be the ground state. Since this 
equation can only be solved exactly for a handful of special cases, it is conven- 
tional to assume a form for the wave function and obtain an approximation to 
it by utilizing the variational principle. Even this ab initio procedure is impractical 
for larger molecules, so one makes additional simplifications in the form of para- 
meters, semi-empirical data, etc., in order to obtain an estimate of the actual 
eigenfunction. The maximum overlap approach is an attempt to generate very 
approximate wave functions from a different viewpoint, where no explicit con- 
sideration of a Hamiltonian and its associated variational principle is required, 
but where the use of a reasonable atomic basis assures some connection with 
atomic Hamiltonians. 

If it were true that minimum energy and maximum overlap were equivalent, 
then it would be possible to obtain wave functions using the latter criterion, where 
only overlap integrals are needed, rather than the variational principle where one 
has the usual integral problems. Of course, this cannot actually be the case since 
a Hamiltonian contains much more information than can be gleaned from overlap 
considerations alone. However, if the maximum overlap criterion in conjunction 
with a reasonaNe atomic orbital basis has some correspondence with the minimum 
energy state for the molecule - as the qualitative analogy between the two would 
lead one to believe - then it should be possible to generate very approximate 
wave functions by imposing the criterion. Depending on the degree of validity of 
this approach, one will have certain advantages over the usual semi-empirical 
schemes. 

This point of view may be somewhat unconventional, so it will be desirable 
to briefly illustrate some differences and similarities with the standard semi- 
empirical Hamiltonian approach. To begin with, the maximum overlap criterion 
can be imposed using only overlap integrals (in particular, the overlap matrix), 
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and, as such, the wave functions are generated without any explicit use of a 
Hamiltonian. This has the necessary consequence that one normally does not 
obtain energies but only the approximate wave function. Many properties of 
experimental interest are determined as expectation values so there is a need for 
the wave functions themselves with total energies often of lesser interest to the 
problem. Although there is no explicit utilization of a Hamiltonian, by using an 
atomic orbital basis which is a set of approximate solutions to the atomic Ham- 
iltonian, one is at least implicitly using a proper equation of motion. 

In order to estimate the matrix elements, F,v, of the "effective" Hamiltonian 
matrix F (Fock matrix), semi-empirical methods usually make use ofparameteriza- 
tion and experimental data to some extent, as well as employing certain integral 
approximations such as the assumption of "zero differential overlap". Once this 
is done, the Hamiltonian is changed and the variational principle is no longer 
a strictly valid extremum condition for the original Hamiltonian (total energies 
below the experimental value are common), so that one is in a sense using an 
"approximate" optimizing principle. This fact may raise some questions about 
energies in semi-empirical theories, but since the approximate Fock matrix 
exhibits the molecular symmetry, one hopes that the corresponding wave func- 
tions still have some important features in common with their exact counterparts. 
Only in very special cases will symmetry alone determine the wave function, but 
it will often specify some of the one-electron functions as well as restricting the 
remainder, thereby helping to establish the form of the total wave function. This 
property is also true of the overlap matrix, and, as such, the "maximum overlap 
wave functions" also use symmetry to their advantage. 

Another feature related to the maximum overlap idea that is peculiar to 
several semi-empirical methods, is the assumption that some sort of proportion- 
ality exists between the off-diagonal Fock matrix elements and the corresponding 
overlap. For example, it has been assumed that F,~ = kS,,~ where k is a parameter, 
as well as other even more exotic functions of the overlap. This kind of supposition 
could be considered a parameterized extension of the qualitative analogy between 
bond strength and overlap. 

In the following using maximum overlap in the sense of Lykos and Schmeising 
[4], we shall generate simple approximate wave functions for a variety of mole- 
cules and investigate their validity by calculating dipole moments and charge 
densities. Comparisons with CNDO [10] wave functions will also be made. 

2. Maximum Overlap Molecular Orbitals 

Following Lykos and Schmeising [4], we shall impose the maximum overlap 
criterion by a consideration of the scalar products <g~l~0,) where {Xu} represent 
a set of atomic orbitals and 

~)i = ~ a i ,  ~ = (Z1Z2 - . .  Zm) (1) 

with the coefficients to be determined by the maximum overlap constraint. If the 
basis is orthogonal on one center, then this scalar product gives a constant 
depending on normalization and a sum of two center overlap integrals weighted 
by the linear coefficients, {av, }. The overlap integrals are fixed by the choice of 
basis for a particular internuclear separation, so by properly choosing the molec- 
16" 
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ular orbital coefficients, the sum of the two center overlaps can be made a 
maximum. Since it is possible that the scalar product ()G[~p~) may be complex 
or negative, we will measure its magnitude in terms of the real and positive 
quantities, 

< z .  = i<z  I p )l 2 • (2) 

By summing over all # and i and requiring that sum to be a maximum subject 
to the usual orthonormality constraints, a set of "molecular orbitals" exhibiting 
maximum overlap in the defined sense can be obtained 1. 

Introducing the Lagrangian multiplier, -2i~, it follows that the maximizing 
functional takes the form 

q =  ~ }2 (~Iz~> (z ,  lt0,> - ~ ~,@~l~;j> • (3) 
i ~ i , j  

Defining the matrix d = ( Z I ~ ) = I  +S  and using ~ [Z~)(Z~i = IZ)(Z[, we have 
# 

q= Z a~ A2a, - ~ ;~j,a~ Aaj. (4) 
i i , j  

Requiring that q be extreme gives 

A2A =AA2,  A =(ala 2 ... am). (5) 

We are at liberty to carry out a unitary transformation that will make 2 diagonal, so 

A2C=ACd,  C = A V ,  d = V t 2 V .  (6) 

Assuming that A is non-singular, which is necessary for a linearly independent 
basis set, we obtain the eigenvalue equation, 

C = c a .  (7) 

These are the usual equations that define the "canonical orthogonalization" 
procedure for an overlapping basis [-5]. But in addition to this, the coefficients, 
C, are the set of eigenvectors that manifest the maximum overlap criterion. If 
U is the unitary matrix that diagonalizes the Hermitian matrix, A, then C = Ud -~ 
with C the properly normalized eigenvectors for an overlapping basis. The U 
vectors are the proper coefficients for a symmetrically orthogonalized basis [5, 6]. 

With these spatial one-electron functions determined, the N-particle wave 
function is assumed to be a single determinant composed of N-pure spin orbitals. 
The orbitals are consecutively occupied according to the magnitude of their 
associated overlap eigenvalues. 

Maximum overlap in the sense used here, differs from the customary idea to 
some extent. Traditionally "maximum overlap" pertains to a particular "bond" 
in a molecule, where it is invoked to predict the hybrid that will give the largest 
overlap and, thusly, the strongest bond 2. As used here, a set of"molecular orbitals" 
are found such that the weighted two center overlap in the entire molecule is 
maximized, regardless of whether any two particular centers coincide with 

1 It is important to observe that it is always possible to obtain more overlap by expanding the 
basis set. Consequently, the concept of maximum overlap can only be meaningful for a specified basis. 

2 Variants of the previous formulation have been applied to this problem by Murrell [7], Gilbert 
and Lykos [8], and Golebiewski [28]. 
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a "bond" in the chemical sense. Also, hybrids do not have their traditional signifi- 
cance, since in the present approach, as in most quantum chemical formulations, 
they are merely an arbitrary unitary transformation of the basis set that may be 
pictorially desirable, but has no effect on any observables. 

Since the solution of (7) requires only an overlap matrix, the sole arbitrariness 
in formulating the problem is essentially the same as in an ab initio procedure, 
namely the choice of basis 3. This being the case, by accepting the maximum 
overlap criterion one has immediately three advantages over many other semi- 
empirical or simplified methods: (1) there are absolutely no parameters of either 
the "fixed" or "adjustable" type needed; (2) there is no need for the use of any 
experimental data or approximately calculated quantities; and (3), the method is 
computationally about as simple an all valence electron treatment as is possible. 

Besides the fact that parameters are usually considered to be unpalatable, 
a more pertinent reason for avoiding both the parameters and semi-empirical 
data is that the wave function predicted by the diagonalization of an approximate 
Fock matrix may be sensitive to the particular values used. Also, the set of para- 
meters are usually only suitable for certain properties, requiring recalibration 
when others are desired. Due to this situation, the absence of parameters and 
other approximations necessarily results in a very desirable internal consistency. 
Thus, in the overlap procedure the question of the compatability of the various 
approximations and assumptions does not arise. 

Another important consideration is that, contrary to some semi-empirical 
methods, the maximum overlap equations involve no approximations and, as 
such, will have the same invariance properties as the Roothaan SCF equations 
[9]. As a consequence, the expectation values calculated with the overlap wave 
function will be independent of a wide class of basis set transformations, such as 
local coordinate axis rotations, hybridization, and atomic orbital orthogonaliza- 
tion. The first two examples are unitary transformations, whereas the third is 
a more general type. Pople and coworkers [10] required that unitary invariance 
of their approximate Fock equations should be maintained as a consistency base 
for a great deal of the development in the CNDO, INDO, etc. schemes. Their 
methods, however, are not invariant to more general transformations that mix 
functions on different centers, such as atomic orbital orthogonalization. 

3. Energy and Maximum Overlap 

Before proceeding further, it should be emphasized that even though we shall 
obtain the maximum overlap molecular orbital (MO-MO) wave functions from 
(7), this equation should not be regarded as any kind of Hamiltonian eigenvalue 
problem where the approximate Fock matrix is assumed to be A (or its negative). 
The characteristic values of A will generally have no correspondence with any 
"one-electron" energies, but the wave functions may still have meaning. This is 
a hope derived from the fact that two commuting Hermitian matrices can be 
simultaneously diagonalized, but, of course, there is not necessarily any con- 
nection between the eigenvalues. 

3 The choice of basis, however, will be more limited due to other considerations. 
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It is unlikely that an approximate F should actually commute with A, but 
the amount  of similarity of the eigenvectors is dependent on a near commutability. 
If we assume that some Fock matrices that are used in semi-empirical theories 
at least roughly reflect the proper behavior of an accurate wave function, then 
it is possible to make a more detailed investigation of the degree of commutability 
between these F's and A. By so doing, some features of the M O - M O  functions 
that limit their applicability shall be elucidated. 

In the single determinant approximation, the general matrix equation to which 
solutions are sought is 

g c  = a C ~ .  (8) 

Let us assume that Fur = 2. .  and F.v = kS .v ,  where k is a parameter independent 
of the particular basis functions involved. Then, with A = 1 + S, 

F = (~ + kS )  = (~ + k a  - k l ) .  (9) 

With this substitution for F, it follows that 

a C = ()~ - kl)  C(, - kl) -1 (10) 

where it is necessary that si # k for all i. By introducing the commutator,  

[~, C] = ~C - CA (11) 

this can be put in the form, 

A C = C0~ - kl)  (e - kl) -1 + [~, C] (~ - kl) -~ . (12) 

Thus if [g, C] = 0, with this particular approximation for F, it follows that the 
maximum overlap eigenvalues problem (7) with d = (g - kl) (5 - kl)-1 is identical 
to that of the model Fock matrix. 

For the case where F , ,  = % for all #, the commutation condition is satisfied. 
An example of this, of course, is the Hiickel K-electron problem for a homonuclear 
system. Consequently, for these systems the maximum overlap wave functions 
and the Hiickel wave functions are the same. This connection has been shown 
explicitly by Lykos and Schmeising [4], and previously observed in a different 
context by Chirgwin and Coulson [11] 4 (see also L6wdin [6]). Although for more 
general molecules one does not generally assume that the diagonal elements of 
a Htickel "effective" Hamiltonian matrix are the same, if the assumption is made, 
the predicted wave function is the maximum overlap solution. Also, a set of 
"eigenvalues" could be associated with the overlap orbitals by choosing e and k. 
The calculations of the boron hydrides by Hoffmann and Lipscomb [3] fall into 
this category. 

At this point, it should be mentioned that a detailed analysis of the inter- 
relationship of the Htickel effective Hamiltonian matrix for re-electron systems 
and the corresponding overlap matrix, primarily within the "tight-binding" 
approximation, has been made by Ruedenberg [26] via the "topological" matrix. 

4 Subject to the restriction of equal diagonal elements, a related proof that the Htickel min imum 
energy state of a molecule coincides with a max i mum Mulliken overlap population has been given 
by R. Manne  [27]. 
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The second paper of this series considers the more general situation, which is 
closer to the present discussion, where all overlap integrals are included. In these 
papers, it is demonstrated that the commutation of A and F has additional con- 
sequences, of which one of the most important is that this feature is crucial to 
the validity of the "zero differential overlap" approximation within the r~-electron 
domain. 

Obviously, once the restriction of equal diagonal elements is removed, it is no 
longer apparent that A and C will commute, but near commutability may apply 
if the diagonal elements are not too different. In the more general case of the 
extended Hiickel theory of Hoffman [12], the parameter is replaced by the 

K 
Wolfsberg-Helmholz [13] type of approximation where k = ~ -  (2,, + 2~v). This 

approximation removes the restriction that k be independent of the particular 
orbitals involved. By partitioning F and A into segments corresponding to the 
different centers, it can be shown that the one center and two center commutation 
terms are 

(FA - A F)=Ij = ~,, (V=mSmfl - S=mFm~ ) 
inCA (13) 

(FA -AF) , ,=  ~ F~kSk,-- ~ S,IFz,+ ~ (F~mAm,-S~mFm,) 
k s A  l e B  m C A  or B 

with e and fl two functions on a single center and 7 situated on another center. 
Using the Wolfsberg-Helmholz approximation in conjunction with the one 
center orthogonality of the basis set, these equations give 

K 
(FA - A F),~ = (2,~ - 2t~p) ~ -  ~ S~mS,, p 

m¢~ (14) 

(FA - A F ) , ~ = ( 2 , , - 2 , ~ )  S~,+ ~ inCA orB 

Therefore, the lack of commutability for both terms is especially dependent on 
the difference in the diagonal elements corresponding to the various basis func- 
tions. If the particular basis functions happen to be two members of a degenerate 
atomic orbital set, then these terms would vanish giving a higher degree of 
commutability. 

In these semi-empirical theories, the diagonal elements are primarily respon- 
sible for the energy difference between the basis functions. In the overlap approach, 
there is no comparable facility for an energy distinction among the members of 
the basis, so one must depend solely on the form of the chosen basis set to reflect 
to some extent the energy disparities that are encountered. This factor will require 
some restrictions on the basis as well as having an effect on the predicted wave 
function. 

Though it may seem intuitive that as overlap increases, bonding increases, 
this analogy can be pushed too far. It is true that since overlap is something of 
a measure of the charge concentration between two positive centers, as overlap 
is increased, binding also increases up to a point; but, overlap continues to 
increase beyond the point where the magnitude of the binding energy begins to 
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decrease, due to the enhanced kinetic energy and interelectronic repulsion that 
is associated with the charge buildup. 

To give an example, a distinctive feature that sacrifices energy for increased 
overlap can be illustrated by considering a p :  and an s-orbital of the same prin- 
cipal quantum number located on a center in a molecule. The s and p orbitals 
are at different energies, but due to the angular dependence and more diffuse 
nature of the p:function, it is possible to obtain more overlap with it than with 
the s-function. This will have the obvious consequence that although a 2s state 
is at a lower energy than the 2p, the maximum overlap criterion will populate the 
2p orbital proportionately more than the 2s with the accompanying sacrifice in 
energy. An illuminating example of this is given by Slater [14]. This problem 
would be considerably more pronounced if a function of a higher unoccupied 
valence state were added to the molecular basis. 

Due to these factors that sacrifice energy for overlap, it is necessary to estab- 
lish three guidelines for these calculations to partially avert obvious errors: 

t. As is customary in simplified theories, inner shell ls electrons will be 
treated as an unpolarizable core; 

2, No functions of a higher n, l value than is necessary to describe the com- 
ponent atoms in their Hartree-Fock ground states will be included in the basis; 

3. To reduce the error incurred in the relative populations of the valence 
orbitals, we will limit our calculations to molecules formed from the first row 
atoms where the disparity in energy between the 2s and 2p states is relatively small. 

4. Charge Densities and Dipole Moments 

In order to test the accuracy of the charge distributions of the maximum 
overlap wave functions, we have made calculations of the dipole moments and 
population matrices for a variety of molecules. 

The dipole moment in atomic units 5 is defined as the expectation value of 
the operator N 

 op= Z L z& (15) 
i ~ l  ~ = 1  

where n = # of electrons, N = ~ of nuclei, Z~ is the nuclear charge of the ath 
nucleus, with fl and R~ as the position vectors of the electrons and nuclei respec- 
tively. The dipole moment is invariant to the origin of the coordinate system for 
neutral molecules. We shall define the dipole in the sense that the negative charge 
in the positive direction results in a positive dipole moment. In particular, for 
a normalized single determinant of orthonormal spatial orbitals, {~Pi}, and their 
associated populations, n~, 

o c t  

fi = ~ n~(ho~(1)l ~11W~(1)) - ~ Z ~ / ~ .  (16) 
i = 1  

Using the matrix notation, with ~p~ = za~ 
oec 

riot= ~ n~a: fat, f=(zlfILz) (17) 
i=i 

s a .u .  = 2 . 5 4 1 6  D e b y e .  
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or, 
oct 

t e l  = Z Z * ~ (18)  nialx~ avi Ylav " 
i=1  #,v 

Defining the single particle density matrix, 
oec 

Pu~ = E * (19) rliatt ~av i , 
i=1 

/~el can be written as 

/~e, = Z P.v ~uv- (20) 
/*,V 

The dipole could be separated into three contributions: (1) a net atomic charge 
term, (2) a polarization term, and (3) a two center contribution. In this manner, 

fi = fta + fiPrz + firc. (21) 

Indicating the various centers in the molecule by e and/8, we define the com- 
ponents as 

= E P . . G -  Ez &= Z G - z o  & 

fi~,Lz = Z Z '  PurrS: (22) 
/1,'¢ 

= Z' E g 

w h e r e  ~ #  r,~ = (;~u(F,)lfl I Zv(Fa)), with Z,(f,) meaning a basis function located on 
center e, and P, = ~ Pu, 6 

The total dipole moment will always be invariant to any transformation of 
the basis set, but the various contributions will not be. When the dipole is 
approximated, the class of transformations to which it is invariant is reduced. In 
the CNDO and INDO approximations, the calculated dipole moments are 
generally good, but they have the undesirable feature that they are approximated by 

fi~pp~o~. = fi, q- fter z (23) 

with the two-center term neglected. This leads to an ambiguity. It seems more 
valid to calculate the dipole moment including the two-center term but to assume 
the CNDO wave function to be built up from a symmetrically orthogonalized 
atomic orbital basis. This naturally, will give a different value for the dipole 
moment. This ambiguity is absent from the maximum overlap method because 

6 These definitions assume that  the basis functions are of the atomic type, i.e., functions of the 
coordinates of one-center only. For a non-atomic basis, such as an orthogonalized atomic orbital basis, 
the {~u} are functions of the coordinates of more than one center and, consequently, the definitions 
must  be interpreted with X,(f=) = ~,(f=, ~p, ...) meaning the basis function predominately corresponding 
to the atomic orbital ;G(f=). Since the symmetrically orthogonalized orbitals minimize 10G -~u)2[ [15], 
there is generally little ambiguity in making "atomic" interpretations relative to this basis. However, 
al though/7 A = Z Pu,fu,  - Z Z=R~, fia # Z (P. - Z.)  R=, since the latter equation depends on the one- 

center property. In this instance the terminology "net charge" component  loses much of its physical 
validity. 
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the entire dipole is used and there are no approximations in the method to destroy 
its invariance properties. In particular, the two-center contribution will be im- 
portant in our predicted dipole moments. Coulson and Rogers have discussed 
the importance of this term [16]. 

The single particle density matrix previously defined (19) takes on two general 
forms depending on whether the basis set is orthogonal or not [17]. The general 
matrix can be written 

e = A A t (24) 

where the matrix a = (1/~1 al ~ a 2 . . .  ~ a k ) f o r  the occupied spatial eigenvectors 
a~, a2, ..., ak and their respective populations n~. If the basis is non-orthogonal, 
then following L6wdin [17], we shall define P = R  which is often called the 
"charge and bond order matrix". For this case Tr(R)# n but Tr(AR)= n. Alter- 
natively, if the basis is orthogonalized, then P = Q, where the eigenvectors {ai} 
are understood to be relative to this basis. We now have the convenient property 
that Tr(Q) = n. 

The R matrix is often considered to be the more chemically meaningful density 
(see L6wdin [6, 17]), but for the purpose of an approximate comparison with the 
fairly extensive CNDO calculations that have been made, it is more convenient 
to use the Q matrices, where the basis is symmetrically orthogonalized. The 
orthogonalization transformation is 

2 = zA -~ (25) 

which leads to Q and R being related by 

Q = A } R A  ~ . (26) 

With this particular orthogonalization, a qualitative "atomic" interpretation of 
Q is reasonable6 and it gives the closest possible correspondence with the 12NDO 
densities. Similarly, the components of the dipole moment will be referred to this 
basis. 

5. Results and Discussion 

Two different atomic orbital basis sets were used in these calculations, the 
"best atom" STO basis of Clementi and Raimondi [18] and the "double zeta" 
basis of Clementi [19]. In both bases, Hydrogen was assumed to be adequately 
described by a single 1s-function with an orbital exponent of 1.20. Both the best 
atom and the double zeta basis use no functions of a higher n, /-value than is 
needed to accomodate all of the atom's electrons. This property, as has been 
described in 3, is an important one from the point of view of applying the maximum 
overlap criterion. (For Li and Be the best atom STO basis was augmented by 
2p STO's with the same orbital exponent as the 2s.) 

All of the calculations were carried out on the IBM-360/65 at the University 
of Florida Computing Center with a maximum execution time of about a minute 
for pyridine using a 29 STO basis. 
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Table 1. Molecular dipole moments 
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Molecule Equilibrium CNDO a Small basis Maximum Overlap Exp. f 
(A + B-  # > 0) geome t ry  (p approx.) ab initio (STO) (DZAO)  

H F  r e = 0.9170/~ 1.86 1.12 b 1.714 1.578 1.91 

H 2 0  ron = 0 . 9 5 8 4 A  2.14 1.58 ~ 2.151 1.997 1.82 

H O H  = 104.45 ° 

H 3 N  rNn = 1.015/~ 2.05 1.97 a 1.861 1.772 1.47 

H N H  = 106.6 ° 

H C N  rcn = 1 .062A 2.46 3.37* 2.142 1.859 2.80 
rcN = 1.157 A 

H C N  = 180.0 ° 

H 3 C F  rCH = 1.095/~ 1.73 - -  1.489 0.965 1.79 
rcF = 1.386 A 

H ~  = 108.60 ° 

H C F  = 110.33 ° 

C s H s N  (Ref. [25]) - -  - -  1.815 - -  2.15 

a These C N D O / I I  values were made available to the authors by Dr. Roy  Bruns of the Department 
of Chemistry, University of Florida. 

b Ransi l ,  B. J.: Rev. rood. Physics  32, 245 (1960). (Best atom calculation.) 
c Ohno,  K.:  Proc. Roy. Soc. (London)  A 255, 367 (1960). 
d Higushi ,  J.: J. chem. Physics 24, 535 (1956). 
e Pan,  D. C., Allen, L. C.: J. chem. Physics 46, 1797 (1967). 
f McCle l lan ,  A. L.: Tables of experimental dipole moments. San Francisco: W. H. F r e e m a n  1963. 

In Table 1 the dipole moments calculated by the maximum overlap method 
are listed along with the experimental values and those from a limited ab initio 
computation. The approximate dipoles calculated from the CNDO method are 
also included. There may be slight differences in the assumed equilibrium geom- 
etry in the three cases, but for our purposes this is of negligible importance. 

HCN 

A discussion of the HCN molecule will illustrate some of the undesirable 
features of the maximum overlap wave functions. In Table 2 the Q matrices for 
the MO-MO wave function and a minimal basis LCAOSCF calculation by 
McLean [-20] can be compared. It should be noticed that the ab initio calculation 
indicates that the ~ (the bar means an orthogonal atomic orbital, OAO) popula- 
tions on carbon and nitrogen are slightly different, yet the MO-MO calculation 
gives exactly equal populations. This result is a consequence of the symmetry of 
the molecule and the fact that the overlap matrix has identical diagonal elements. 
For diatomic molecules, and in particular the triple bond in HCN, there is no 
distinction between ~ orbitals on different centers. This results in the MO-MO's 
being of the form 

1 
q~ = ~ (/5~A -+ F~.) (27) 

V z 
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Table 2. Charge and bond order matrices for H C N  (linear; z taken as a axis) 

C(2s) C(2pz ) C(2py)  C(2p~) N(2s )  N(2p~)  N(2pr ) N(2px ) H(ls) 

MO-MO best atom basis 

C(2s) 0 . 9 2 9 9  0.0017 0.0 0.0 0.5470 -0.4523 0.0 0.0 0.7009 
C(2p~) 1.0714 0.0 0.0 0.5996 -0.3695 0.0 0.0 -0.7063 
C(2py) 1.000 0.0 0.0 0.0 1.00 0.0 0.0 
C(2p~) 1.000 0.0 0.0 0.0 1.00 0.0 
N(2s) 1.3321 0.4706 0.0 0.0 0.0977 
N(2pz ) 1.6613 0.0 0.0 0.0151 
N(2p,) 1.000 0.0 0.0 
N(2p~) 1.000 0.0 
H(ls) 1.0053 

Reference calculation a 

C(2s) 1.0228 -0.1159 0.0 0.0 0.3890 -0.5773 0.0 0.0 0.7031 
C(2pz) 1.0765 0.0 0.0 0.5156 -0.4975 0.0 0.0 -0.6815 
C(2pr ) 1.0287 0.0 0.0 0.0 1.00 0.0 0.0 
C(2px ) 1.0287 0.0 0.0 0.0 1.00 0.0 
N(2s) 1.5987 0.4587 0.0 0.0 0.0113 
N(2p~) 1.4470 0.0 0.0 0.771 
N(2py) 0.9713 0.0 0.0 
N(2px ) 0.9713 0.0 
H(ls) 0.8466 

a This Density matrix was computed in second paper of Ref. [10]. 

which leads to an equal population in the P~A and ~ , ,  orbitals. Judging from the 
ab initio result, this constraint is not too bad for the case of HCN, but in general 
it is a serious restriction. For example, the charge distributions derived from an 
MO-MO wave function cannot be meaningful for most diatomic molecules. 
Although it might be thought that this problem would also be present in the CF 
bond of a molecule such as methyl fluoride, this is not the case, since the three 
hydrogen atoms lift the symmetry; restrictions that would apply if CF were treated 
as a diatomic molecule, allowing unequal populations in the 2p-orbitals perpen- 
dicular to the threefold axis of symmetry. 

The other feature that is apparent from the population matrices is the slight 
under-emphasis of 2~ populations and over-emphasis of the Nitrogen 2~.. As 
previously discussed in 3, this is inherent in the maximum overlap criterion since 
with conventional orbital exponents, more overlap can be obtained from a 
2p orbital than a 2s. Therefore, the 2p will usually be proportionately more 
populated. This factor will be apparent in all of our calculations. 

Diatomic Hydrides 

Another special case that deserves mention is the first row hydrides. Due to 
the lack of p~ orbitals on hydrogen, one does not have the previously discussed 
K-electron problem which would be present for other diatomics. However, there 
is still a complication caused by the diatomic symmetry and the identical diagonal 
elements of the overlap matrix. The typical first row hydride basis, {H(ls), B(2s), 
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B(2p0 ), B(2P±t)}, leads to a blocking of the secular equation into a 3 x 3 a block 
and a diagonal re-orbital par t  with overlap eigenvalues of 1.00. The a block leads 
then to the equation 

B(2s) (1 - 2) 0.0 a 

U(2po) 0.0 (1 - 2) b = 0 = (1 - 2) E(1 - 2) z - (b z + a2)] (28) 

H(ls) a b (1 - 2) 

where a a eigenvalue is seen to be 1.00 also. The single a coupled with the two 
rc orbitals gives a triply degenerate set which can lead to ambiguities in occupying 
the orbitals. Also, the a M O - M O  corresponding to overlap characteristic value 
1.00 will be constrained so that the H(ls) orbital will have a zero coefficient. This 
will tend to make it difficult for charge to relocate as one moves across the first 
row from LiH to FH. 

For  LiH and HF  there will be no ambiguity in the occupance of the MO-MO's ,  
but for Bell, BH, CH, NH, and OH, one is faced with this problem. Since a 
Hamiltonian formulation would place the a orbital at a lower energy, we chose 
to occupy the a orbital twice before beginning to occupy the z-orbitals in calcu- 
lating the dipole moments in Table 3. It should be noticed that at the two end 
points LiH and HF, the dipoles are fairly accurate. Both of these cases involve 
no ambiguity since for LiH none of the degenerate M O - M O ' s  are occupied and 
in the case of HF, all are doubly occupied. The hydrides adjacent to the end points 
have the next most accurate dipoles, with those in the middle, BH, CH, and NH, 
being the least accurate. 

If the diagonal elements had been different, as in any Hamiltonian formulation, 
the somewhat accidental degeneracy of a and n-MO's could not have occured. 
However, this is a relatively minor restriction since it happens only for the special 
case of the first row hydrides and the water molecule. Of these, LiH, HF, and 
H 2 0  have no occupancy ambiguity. Just as happened previously, additional 
atoms in the molecule will lift the restrictive diatomic symmetry leading to no 
problem of this type for the larger molecules. 

T a b l e  3. Dipole  m o m e n t s  o f  d ia tomic  hydr ides  

M o l e c u l e  E q u i l i b r i u m  C N D O  a Smal l  bas is  M a x i m u m  Exp.  
(A + B - / ~  > 0) g e o m e t r y  ab initio ove r l ap  

H L i  r e = 1.595 A - 6.02 - 6.48 b - 5.951 - 5.90 a 

H B e  r e = 1.343 A - -  - -  - 0 .334 ( -  0.248) r 
H B  r e = 1.232 A 1.94 1.03 b 2.709 (1.733) f 

H C  r e = 1.1197 A 1.55 0.93 ¢ 2.299 (1.570) r 
H N  r e = 1.0377 A 1.33 1.68 b 2.046 (1.627) f 
H O  r e = 0.9705 A 1.25 0.92 c 1.861 1.65 e 

H F  r e = 0.9170 A 1.27 1.12 b 1.714 1.91 a 

a All of  the  C N D O  va lues  a re  f r o m  s e c o n d  p a p e r  of  Ref. [10]  (Vers ion I). 
b Ref. (b), T a b l e  1. 

c K r a u s s ,  M. :  J. chem.  Phys ics  28, 1021 (1958). 
d Ref. (f), T a b l e  1. 

e Meye r ,  R .T . ,  Myer s ,  R . J . :  J. chem.  Phys ics  34, 1074 (1961). 

f Cade ,  P .E. ,  H u o ,  W.  H.  : J .  chem.  Phys ics  45, 1063 (1966). (SCF  Ca lcu la t ion . )  
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HF, H~O, NH3, CH 4 

The isoelectronic sequence HF, H20, NH 3 and CH 4 gives an interesting test 
of the overlap procedure. The MO-MO dipole moments of the first three 
members of the series are seen to be surprisingly accurate despite the naivete of 
the method. In fact, they are comparable, or even better, than the small basis 
ab initio calculations. This is no doubt partially fortuitous, but it also indicates 
that the wave function has a degree of realism. 

In order to directly compare the MO-MO dipole components with those from 
CNDO calculations, the CNDO basis was symmetrically orthogonalized and, 
then, the entire dipole computed. As discussed in 4, the resultant dipole will differ 
from the usual dipole approximation used in the CNDO method. The actual 
differences in the cases studied vary from 0.2 to 0.5 debye units, moving both 
toward, and away from, the experimental values. As suggested by Pople et al., this 
method of calculating dipole moments with CNDO wave functions is probably 
to be preferred [10]. One can see from Table 4 that the CNDO "net charge" 
component is generally more positive than its MO-MO counterpart, whereas 
the two center terms are considerably more prevalent in the latter. This is pri- 
marily a result of the overlap criterion overpopulating the 2p,-orbitals relative 
to the 2s, which leads to a greater concentration of charge between the atomic 
centers. In both cases the principal dipole contribution is the polarization term. 

The purpose of using the double zeta basis (DZAO) was to investigate the 
effect the more diffuse atomic orbitals would have in connection with the maximum 

Table 4. Composition of the dipole moments 

Molecule Method ~/A #PLZ #TC 

HF 

H20  

H3N 

H3CF 

M O - M O  
Sym. 0 - STO - 0.3554 1.2901 0.7796 1.714 
Sym. 0 - DZAO 0.0248 1.2871 0.2659 1.578 

CNDO" 0.6989 0.7787 0.1969 1.6745 
(1.049) (0.8059) - -  (1.855) 

M O - M O  
Sym, 0 STO 0.0834 1.385 0.683 2.151 
Sym. 0 - DZAO 0.5263 1.4045 0.0665 1.997 

CNDO 0.4520 1.2180 0.0917 1.7617 
(0.8027) (1.3379) (2.141) 

M O - M O  
Sym, 0 -  STO 0.2942 1.235 0.3317 1.861 
gym, 0 - DZAO 0.7037 1.274 - 0.2057 1.772 

CNDO 0.2262 1.5048 - 0.1465 1.5845 
(0.4149) (1.636) - -  (2.051) 

M O - M O  
Sym. 0 - STO - 0.477 1,401 0.565 1.489 
Sym. 0 -  DZAO -0.2169 1.359 -0.178 0,965 

CNDO 0.9097 0.4376 0.0880 1.4353 
(1.315) (0.417) - -  (1.732) 

a The numbers in parentheses are the values for the usual CNDO dipole approximation. 
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overlap criterion. It has been observed that the "maximum overlap" state actually 
involves a greater degree of overlap than would be present for the molecule's 
minimum energy state. Consequently, using a more diffuse set could cause ad- 
ditional errors. To the contrary, though, it appears that the overlap criterion is 
rather insensitive to the basis change. As judged by the sum of the eigenvalues 
of the occupied eigenvectors, the DZAO basis gives only a very slightly increased 
overlap (<0.1), whose effect is essentially to increase the population of the 
Hydrogen ls orbitals. Actually, the inherent error in the 2s, 2p, populations is 
reduced for this basis as is indicated by the diminished effect of the two center 
dipole contribution. The polarization terms are almost unaffected. 

Although underestimating the 2s population is inherent in an MO-MO wave 
function, it is coupled with an overestimation of the occupancies of  the 2p orbitals 
which tends to give a partial cancellation. This is evident from a comparison of 
the net charges per atom 7 of the MO-MO wave functions for this group of 
molecules with the values obtained by the CNDO approximation. For con- 
venience these are listed in Table 5. It is seen that the MO-MO net charges 8 
with both basis sets are similar to the CNDO values. 

Since the determinantal wave function is invariant to basis hybridization, one 
can utilize this freedom to obtain a particularly illustrative description of this 
sequence by using a set of equivalent tetrahedral hybrids for the heavy atom 1-21]. 
In Table 6 are listed the charge and bond order matrices relative to the sp 3 hybrids 
formed from the symmetrically orthogonalized best atom STO basis. The popula- 
tion matrices for the orthogonalized DZAO basis are essentially the same. 

The four orthonormal tetrahedral hybrids are of the form 

4 

ti= Z-ZU~ui, i =  1 , 2 , 3 , 4  ( 2 9 )  

with the bar indicating the OAO functions. The specific values for the coefficients 
{~u,} depend on the orientation of the coordinate system. By means of the 

Table  5. Atomic valence charoes 

Molecu le  M O - M O  M O - M O  C N D O / P  C N D O / I I  b 
Best  a t o m  STO D o u b l e  zeta  

H F  F : 7.00 H : 1.00 F : 7.00 H : 1.00 F : 7.080 H : 0.920 F : 7.282 H : 0.768 

H 2 0  O : 6 . 1 2 0  H : 0 . 9 4 0  0 : 6 . 0 9 4  H : 0 . 9 5 3  O : 6 . 1 1 6  H : 0 . 9 4 2  0 : 6 . 2 8 2  H : 0 . 8 5 9  

N H  3 N : 5 . 2 0 1  H : 0 . 9 3 3  N : 5 . 1 7 3  H : 0 . 9 4 2 3  N : 5 . 1 4 1  H : 0 . 9 5 3  N : 5 . 2 3 4  H : 0 . 9 2 2  

CH~ C : 4 . 2 1 4  H : 0 . 9 4 7  C : 4 . 1 9 6  H : 0 . 9 5 1  C : 4 . 1 4 2  H : 0 . 9 6 5  C :4 .049  H : 0 . 9 8 8  

C H a F  C : 4.124 H : 0.974 C : 4.104 H : 0.991 - -  - -  C : 3.821 H : 0.995 
F : 6.954 F : 6.923 F : 7.194 

C H a C H  3 C :4 .1137  H : 0 . 9 6 2 1  - -  - -  C : 4 . 1 0 0  H : 0 . 9 6 6 6  - -  - -  

" Second pape r  of Ref. [10]. 
b Ref. (a), Table  1. 

7 See F o o t n o t e  6, 

8 H F  m u s t  have  the values  7.00 and  1.00 due  to the s y m m e t r y  res t r ic t ions  discussed above.  
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Table 6. Charge and bond order matrices for HF, H20 , NH3, and CH 4 (tetrahedral hybrids) 

HF 
F(tl) F(t2) F(ta) F(t4) H(ls) 

F(tl) 1.1527 -0.2077 -0.2077 -0.2077 0.9205 
F(t2) 1.9491 -0.0509 -0.0509 0.2256 
F(t3) 1.9491 -0.0509 0.2256 
F(t4) 1.9491 0.2256 
H(ls) 1.000 

H20 
O(t~) O(t2) O(ta) O(t4) H~(ls) H2(ls ) 

O(ta) 1.1196 -0.1738 -0,1738 -0.1738 0.9447 -0.0113 
O(t2) 1.1196 -0.1774 -0.1774 -0.0113 0.9447 
O(t3) 1.9403 -0.0597 0 .1570  0.1570 
O(t4) 1.9403 0 .1570  0.1570 
Hl(ls ) 0.9401 0.2335 
Hz(ls ) 0.9401 

NH 3 
N(tl) N(t2) N(t3) N(t4) Hl(ls) U2(ls) U3(ls) 

N(tl) 1.9438 -0.1489 -0.1489 -0.1489 0 .1194  0 .1194  0.1194 
N(tz) 1.0858 -0.1345 -0.1345 0.9665 -0.0089 -0.0089 
N(t3) 1.0858 -0.1345 -0.0089 0.9665 -0.0089 
N(t4) 1.0858 -0.0089 -0.0089 0.9665 
Hl(ls ) 0.9329 0 .1532  0.1532 
H2(ls ) 0.9329 0.1532 
H3(ls ) 0.9329 

CH4 
C(tl) C(t2) C(t3) C(t4) Hl(ls) H2(ls) H3(ls) H4(ls) 

C(t~) 1.0534 -0,1030 -0.1030 -0.1030 0.9825 -0.0052 -0.0052 -0.0052 
C(t2) 1.0534 -0.1030 -0.1030 -0.0052 0.9825 -0.0052 -0.0052 
C(t3) 1.0534 -0.1030 -0.0052 -0.0052 0.9825 -0.0052 
C(t4) 1.0534 -0.0052 -0.0052 -0.0052 0.9825 
Hi(ls ) -0.9466 0 .1030  0 .1030  0.1030 
H2(ls) 0.9466 0 .1030  0.1030 
Ha(ls ) 0.9466 0.1030 
H4(ls ) 0.9466 

localizing effect gained by the tetrahedral  hybrid  transformation,  the terms in the 
density matrix can be easily categorized into bonds,  lone pairs, an¢ repulsive 
terms. It can be seen f rom Table 6 that  the charge and bond  order  matrices of  
HF,  H2 O, and N H  3 prominent ly  exhibit the non-bonding  electron "lone pairs" 
with a popula t ion apparent ly  independent  of the specific molecule involved. If we 
indicate the various repulsive terms in the density matrices as B - L P  (bond - lone 
pair), B - B  (bond-bond) ,  L P - L P  (lone p a i r -  lone pair), and B - H  ( b o n d - H y d r o g e n  
atom), then it is seen that  in all cases the B - L P  term has the largest magnitude,  
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followed by the B-B, LP-LP, and B-H terms respectively. In HF the B-LP value 
is about four times greater than the LP-LP term which tends to imply a dis- 
torted tetrahedron with an angle between the bond and the lone pair directions 
considerably greater than the tetrahedral value. This observation is consistent 
with the studies of the polymeric structure of HF in crystalline form by Atoji and 
Lipscomb 1-22]. They found infinite zig-zag coplanar chains with a bond angle 
of 120.1. ° 

The usual oversimplified explanation of the fact that the angles between the 
bonds of H20 and NH a are less than the tetrahedral value is that the B-LP 
repulsion is greater than the B-B repulsion. This is reflected by the MO-MO 
population matrices, though it is also indicated that in water the LP-LP repulsive 
term is an important factor as would be expected. For CH4 the bonds assume 
the maximum spatial separation with the consequent reduction in the B-B and 
B-H terms of the population matrix. 

C2H6, CHaF 

In going from methane to ethane there is very little change in the features of 
the density matrices, the principal effect being a slight increase in the charge on 
the hydrogens with an accompanying decrease on carbon. The agreement between 
the MO-MO net charges and the CNDO values is very close. For comparison, 
the net charges from the Q matrix constructed from the extended H/Jckel wave 
function of Hoffman 112] are 4.242 and 0.9193. 

The transition to methyl fluoride involves a larger increase in the charge on 
the hydrogens coupled with the somewhat surprising (and probably erroneous) 
result that the fluorine atom has a very slight net positive charge while the carbon 
atom is negative. This fact leads to a negative "net charge" contribution to the 
dipole moment, although the polarization and the two center terms counter 
balance it to give a resultant dipole of 1.49 D with its negative end at the fluorine 
atom. 

The reason for this discrepancy is again the relative populations of the 
fluorine 2s and 2p orbitals. Due to the large energy disparity between the F(2s) 
and the carbon orbitals, an energy criterion will tend to occupy the F (2s) to a large 
extent. The actual value for a CNDO calculation is 1.844 as compared to an 
MO-MO value of 1.348. As has been discussed, we expect the MO-MO wave 
function to underestimate this value, but the consequent effect is expected to be 
partially neutralized by the increased 2p population. For this particular case, the 
F(2s) CNDO population is greater than the MO-MO value by about 0.5 
electrons. The F(2pz) value, though, is greater than the CNDO by only about 
half of this which accounts for the difference in the net charges. Contrary to HF, 
HzO, and NH 3, the error is more pronounced for the DZAO basis resulting in 
a poorer dipole moment. 

Pyrifline 

To investigate the suitability of a maximum overlap wave function for an 
aromatic molecule, pyridine was treated. For this case, one will obtain arc wave 
function as well as one for the o- "core". The former would simply be the Hiickel 
17 Theoret. ehim. Aeta (Berl.) Vol. 21 
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Table 7. Atomic net charges for pyridine 

PPP(n)~ ab initio(~z) ~ M O - M O  (Tr) ab initio(a and ~)b M O - M O  (or and 7r) 

N -0.1827 -0.0102 -0,0152 -0.2262 -0.0374 
C(ortho) 0.0454 -0.0048 0.0028 -0.1097 0.0411 
C (meta) - 0.0173 - 0.0024 - 0.0094 - 0.2252 - 0,0346 
C (para) 0.0855 0,024,5 0.0304 - 0.2024 0.0353 
H (ortho) 0.2217 0.0116 
H (meta) 0.2172 0.0060 
H (para) 0.2203 0.0002 

a Ref. [24]. 
Ref. [25] : These net charges are calculated with the Mulliken Population Analysis. 

solution if the molecule were homonuclear, but in the heteronuclear case, it is 
a similar type of approximation. It is advantageous, however, that one can also 
calculate the cr structure with a treatment somewhat comparable to the simple 
theories developed for the rc electrons. 

The rc solution indicates only a slight distinction in the net charges on each 
atom. The actual values are listed in Table 7. A Pariser-Parr-Pople [23] type of 
calculation implies that there is much more migration of charge than the M O - M O  
method would suggest [24]. To the contrary, a comparison with a Mulliken net 
charge analysis of Clementi's ab initio calculation [25] seems to denote that very 
little migration actually takes place. One should not necessarily interpret this as 
support for the M O - M O  7r calculation, however, since by the nature of the method 
(as illustrated in CH3F) it cannot effectively transfer large amounts of charge. 
Also, there is no precise correspondence between our charge and bond-order 
matrices and the Mulliken analysis, but the qualitative features should be the same. 

If the a electrons are included, one sees that the net negative and positive 
M O - M O  charges are slightly incremented, whereas the ab initio result suggests 
greater a migration. This is indicated by the larger net positive charge on the 
hydrogens. 

It may be noticed that both the PPP and M O - M O  rc net charges are con- 
sistent with the well known nucleophilic (ortho-para) and electrophilic (meta) 
directional properties of pyridine, but the ab initio values are not. Although the 
directional properties of aromatic systems are often considered to be primarily 
a function of the rc electrons, the importance of the a "core" is emphasized by the 
ab initio result, since it is necessary to include the a net charges to obtain an 
agreeable electrostatic picture. Even though the net charge magnitudes in the 
maximum overlap method may be too small, they also give a proper electrostatic 
description. 

6. Conclusion 

By imposing a criterion derived from the traditional chemical concept of 
maximum overlap, it is possible to obtain very approximate molecular wave 
functions solely from a diagonalization of the overlap matrix. These "maximum 
overlap" functions are consequently determined without recourse to semi- 
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empirical data, parameterization, or other approximations. From a different per- 
spective, the "overlap" wave functions can be identified as those that would be 
obtained from a Htickel theory subject to the restriction that the diagonal elements 
of the "effective" Hamiltonian matrix are assumed equal. Or, equivalently, with 
this restriction, the state of maximum overlap for a molecule coincides with its 
minimum Hiickel energy. 

Despite the fact that there are obvious errors in any such procedure, with 
a realistic atomic orbital basis the charge densities and dipole moments calculated 
from the "overlap" wave functions are surprisingly accurate for a variety of 
molecules. Much of this accuracy is indebted to partial cancellations of errors, 
however. 

For predominately covalent systems, there is, at least, some reality to the 
M O - M O  functions. Thus, it seems likely that they would be a convenient inter- 
nally generated starting set for more sophisticated calculations. Also, in n-electron 
theory a simple wave function for the a "core" is an asset both as a rough extention 
of the calculation to include all valence electrons and, possibly, to construct 
a better effective potential for the n-electrons. 
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